Ultradźwiękowe odtłuszczanie

Metoda ultradźwiękowego mycia opiera się na zasadzie wprowadzenia do roztworów drgań ultradźwiękowych, w praktyce przemysłowej o częstotliwości od 20 kHz do 50 kHz. Pozwala to nie tylko na znaczne przyspieszenie procesu, ale także uzyskanie wysokiego stopnia oczyszczenia powierzchni mytych elementów, wyeliminowanie pracy ręcznej oraz łatwopalnych i trujących roztworów.

Technologia mycia ultradźwiękowego znajduje powszechne zastosowanie w przygotowaniu powierzchni w procesach międzyoperacyjnych, końcowych cyklu produkcyjnego, a także w serwisie i konserwacji sprzętu i narzędzi.

Proces czyszczenia ultradźwiękowego uwarunkowany jest szeregiem czynników, do których należą:

  • natężenie i częstotliwość pola ultradźwiękowego w roztworze myjącym
  • rodzaj roztworu myjącego
  • rodzaj zabrudzeń i wymagany stopień oczyszczenia
  • rodzaj materiału czyszczonych elementów

Intensywność tego procesu zależy od wielu parametrów, a głównie w kolejności j.n.:

  • mechaniczno-erozyjne oddziaływanie zjawiska kawitacji na oczyszczane powierzchnie
  • fizyczno-chemiczne oddziaływanie roztworu na zabrudzania
  • stopień rozpuszczalności i dyspersji zabrudzeń v; roztworze
  • stopień dyfuzji i zwilżenia powierzchni określający możliwości wnikania roztworu w pory, zagłębienia i małe otwory

Istotą mycia ultradźwiękowego jest powstanie kawitacji w roztworze, dzięki której pokonywane są mechaniczne siły przytrzymujące zabrudzenia przy powierzchni oraz przyspieszony jest proces ich rozpuszczenia.

Efektywność kawitacji w znacznym stopniu zależy od własności fizycznych użytego roztworu myjącego. I tak:

  • wysokie napięcie powierzchniowe cieczy podnosi natężenie kawitacji, jednak wymagane jest wówczas osiągnięcie wyższe progu kawitacji.
  • niskie napięcie powierzchniowe cieczy zwiększa zwilżalność mytych powierzchni. Roztwory o takich właściwościach nadają się do mycia elementów o skomplikowanych kształtach.
  • mała gęstość cieczy obniża natężenie kawitacji.
  • duża gęstość cieczy zwiększa oporność akustyczną.
  • zagazowanie cieczy obniża natężenie kawitacji.
  • niskie ciśnienie par nasyconych cieczy zwiększa natężenie kawitacji.
  • temperatura cieczy wpływa istotnie na wartość natężenia kawitacji.

Dla roztworów wodnych optymalny poziom wynosi około 55°C, dla rozpuszczalników alkoholowych wynosi 10 – 20°C, a rozpuszczalników na bazie nafty wynosi 20 – 30°C.

Roztwory stosowane do mycia ultradźwiękowego można pogrupować j.n.:

  • Rozpuszczalniki organiczne.
  • Roztwory wodne

Rozpuszczalniki organiczne charakteryzują się dobrymi właściwościami rozpuszczania różnych zanieczyszczeń. Jednak przed zastosowaniem należy zwrócić uwagę na poziom tłumienia ultradźwięków, toksyczność, możliwość regeneracji oraz narażenie korozyjne mytych elementów, urządzenia do mycia ultradźwiękowego na rozpuszczalniki organiczne są znacznie droższe od urządzeń na roztwory wodne. Stosowanie roztworów wodnych pozwala na uzyskanie najwyższego natężenia kawitacji w porównaniu z innymi kąpielami myjącymi. Przy odpowiednim doborze rodzaju roztworu pod kątem występujących zanieczyszczeń i materiału elementów, jego stężenia, otrzymuje się wysoką, pożądaną efektywność oczyszczenia powierzchni.

Roztwory wodne można podzielić na:

  1. zasadowe detergenty, mieszaniny czyszczące na bazie wodorotlenku sodu, fosforanu sodu, szkła wodnego i innych
  2. kwaśne wodne roztwory kwasu winowego, cytryno w ego i innych organicznych i nieorganicznych kwasów
  3. neutralne mieszaniny i emulsje / rozpuszczalnik organiczny + emulgator + stabilizator + woda

Własności i efektywność oczyszczenia odczynników zasadowych można określić według liczby pH w roztworze:

1.1. Roztwory zasadowe o pH 10,5 do 11,2 są najmniej agresywne. Używane są do oczyszczenia aluminium i jego stopów, mosiądzów i stopów cynku odlewanych ciśnieniowo. Z uwagi na wartość pH możliwe jest występowanie korozji po obróbce.

1.2. Roztwory zasadowe o pH 11,2 do 12,4 znajdują zastosowania przy myciu aluminium i jego stopów, stopów cynku, stali z zanieczyszczeń z lekkich olei ropopochodnych, past polerskich.

1.3. Roztwory zasadowe o pH 12,4 do 13,8 zawierają związki sodu i szło wodne. Można usunąć przy ich pomocy zanieczyszczenie z mineralnych i roślinnych olei, a nawet stare farby i naloty. Najaktywniejszym roztworem zasadowym o pH 13,3 można oczyścić powierzchnię z rdzy, tlenków i kamienia kotłowego. Do wszystkich rodzajów roztworów zasadowych dodawany jest fosforan sodu, który służy do zmiękczenia wody. Stosowane stężenia roztworów zawierają się w granicach 0,2-2,0%.

2.1. Roztwory kwaśne w myciu ultradźwiękowym używane są do usuwania rdzy, trawienia, odbijania przypieczonych warstw powstałych podczas kucia i ciągnienia. Z uwagi na wpływ energii ultradźwiękowej na podwyższenie agresywności słabego kwaśnego roztworu należy zabezpieczyć odpowiednio wannę przed uszkodzeniem. Rodzaj stosowanych kwasów i ich stężenie w roztworze zależy od gatunku materiału oczyszczanych elementów. Temperatura pracy roztworów kwaśnych wynosi 20°C, a stężenie od 5 do 25% dla materiałów mało odpornych i 20 do 50% dla materiałów bardziej odpornych.

3.1. Roztwory neutralne charakteryzują się spolaryzowaną budową molekularną. Uzyskuje się dzięki nim obniżenie napięcia powierzchniowego wody, emulgowanie olejów i dyspergowanie zanieczyszczeń stałych. Stosowane są przede wszystkim przy oczyszczaniu narzędzi i sprzętu medycznego, zespołów i podzespołów elektronicznych.

Technologia oczyszczania ultradźwiękowego składa się z operacji j.n.

  • wstępnego mycia bez udziału ultradźwięków, stosowane w przypadku silnego zabrudzenia
  • mycia ultradźwiękowego
  • płukania w czystej wodzie lub w wodzie demineralizowanej
  • suszenia

Urządzenia do mycia ultradźwiękowego wytwarzane są w różnych wielkościach w zależności od wymiarów elementów i potrzeb produkcyjnych. Pojemność wanien ultradźwiękowych wynosi od 0,5 dm3 do rzędu kilku metrów sześciennych. Przetworniki ultradźwiękowe umieszcza się na dnie wanny lub na jej ściankach. Obecnie stosuje się wysokosprawne przetworniki piezoelektryczne i generatory tranzystorowe o mocy jednostkowej od 100 do 1200 W.

Odtłuszczanie chemiczne i elektrochemiczne

Odtłuszczania: chemiczne i elektrochemiczne są – obok stosowanego często poza linią odtłuszczania wstępnego, trawienia i dekapowania (aktywacji) – etapami w sekwencji procesów przygotowania powierzchni detali przed nakładaniem powłok galwanicznych.

Na przykład przygotowanie powierzchni stali może wyglądać następująco:

  1. odtłuszczanie wstępne
  2. płukanie
  3. odtłuszczanie chemiczne
  4. płukanie
  5. trawienie
  6. płukanie
  7. odtłuszczanie elektrochemiczne
  8. płukanie
  9. dekapowanie itd.

Odtłuszczanie prowadzi się w celu usunięcia z powierzchni detali różnego typu zanieczyszczeń, takich jak:

  • zanieczyszczenia mechaniczne
  • produkty korozji
  • smary, oleje, tłuszcze itp.
  • pasty polerskie.

Właściwe przygotowanie powierzchni jest nieodzownym warunkiem otrzymania powłok galwanicznych dobrej jakości, o wymaganej odporności korozyjnej.

60 – 70% braków w galwanizerni powstaje na skutek nieodpowiedniego przygotowania powierzchni.

1. Odtłuszczanie chemiczne

Prowadzi się je w roztworach alkalicznych, zawierających najczęściej:

  • wodorotlenek sodowy (potasowy)
  • węglan sodowy (potasowy)
  • fosforany
  • krzemiany
  • borany
  • glukoniany

Stężenia poszczególnych składników wahają się w dość szerokim zakresie i zależą od materiału podłoża i rodzaju zanieczyszczeń.

W literaturze można znaleźć dużą ilość receptur kąpieli odtłuszczających wraz z ich parametrami pracy. W Tablicy 1 podano przykłady składów podstawowych kąpieli do otłuszczania i parametrów ich pracy (za doc. Dr Z.Kolanko).

Receptury kąpieli
Rodzaj podłoża Skład kąpieli w g/l Temp. °C Rodzaj odtłuszczania Gęstość prądu w A/dm² Czas odtłuszczania w min.
1 2 3 4 5 6
Stal, stal nierdzewna i kwasoodporna /ew. powłoka Ni nałożona elektro − chemicznie/
  • NaOH
  • Na2CO3
  • Na3PO4
  • x12H2O
  • oraz ew.
  • Na2SiO3
  • /x2/zwilżacz
  • 30-50
  • 30-50
  • 30-50
  • 20-30
  • 0,05-0,1
85±5 Chemiczne Zależnie od potrzeb
Elekrto − chemiczne 5-10 3-5
  • Miedź
  • Mosiądz
  • /Ms/
  • /x1/
  • NaOH
  • Na2CO3
  • Na3PO4
  • x12H2O
  • oraz ew.
  • /x2/zwilżacz
  • 5
  • 20-30
  • 20-30
  • 0,05-0,1
75±5 Chemiczne wyłącznie Cu Zależnie od potrzeb
Elektro − chemiczne

  • Cu
  • Ms
  • 3-6
  • 2-5
  • 2-3
  • 1-3
  • Stopy cynku
  • /znal/
  • /x1/
  • NaOH
  • Na2CO3
  • Na3PO4
  • x12H2O
  • 5
  • 20-25
  • 20-25
75±5 Elekrto − chemiczne 10-15 katodowo,w zako­ńczeniu kilka sekund anodowo 45-60 sekund
Aluminium i jego stopy
  • NaOH oraz
  • Na2CO3
  • lub Na3PO4
  • x12H2O
  • lub rzadziej
  • Na2SiO3
  • 5-10
  • 25-30
  • 20-25
  • do 20
80±5 Chemiczne Zależnie od potrzeb 1-3 min
55±5 Elekrto − chemiczne 2-5 3-5

Uwagi:

/x1/ Ze względu na reaktywność podłoża oraz czas trwania operacji – unikać odtłuszczania chemicznego.

/x2/ Zwilżacz stosować do otłuszczania chemicznego. Do kąpieli przeznaczonych do odtłuszczania elektrochemicznego nie należy dodawać zwilżaczy tworzących pianę, ze względu na możliwość gromadzenia się w niej wodoru i tlenu, co przy iskrzeniu np. podczas zdejmowania wieszaków może doprowadzić do wybuchu.

Postęp w opracowaniu nowych, wydajniejszych kąpieli odtłuszczających polega – tak jak w przypadku wszystkich kąpieli galwanicznych – nie tyle na zmianie składu podstawowego, ile na wprowadzaniu odpowiednich, wyspecjalizowanych dodatków organicznych wspomagających odtłuszczanie. Są to generalnie środki powierzchniowo czynne (SPC) – mające właściwości zwilżające, pieniące, emulgujące, flotujące itp.

Cząsteczka SPC składa się z części hydrofobowej (niepolarnej – nierozpuszczalnej w wodzie, a łatwo rozpuszczalnej w cieczach niepolarnych, np. w olejach) i części hydrofilowej (polarnej – rozpuszczalnej w wodzie a nierozpuszczalnej w cieczach niepolarnych). Ze względu na budowę chemiczną można wyróżnić cztery grupy SPC: anionowe, kationowe, niejonowe i amfoteryczne.

Jako dodatki do kąpieli odtłuszczających stosowane są najczęściej związki anionowe (zawierające kwasową grupę hydrofilową) oraz niejonowe (nie dysocjujące w roztworze wodnym na jony, a których rozpuszczalność w wodzie powoduje obecność grup organicznych o dużym powinowactwie do wody).

We współczesnej galwanotechnice generalnie odchodzi się od samodzielnie sporządzanych odtłuszczań, coraz częściej stosując gotowe do rozpuszczenia w wodzie mieszanki – w formie stałej lub ciekłego koncentratu.

Zaletami takiego rozwiązania są:

  • łatwe sporządzanie i uzupełnianie kąpieli
  • na ogół znacznie niższe sumaryczne stężenia soli
  • wydłużony “czas życia”
  • dodatki organiczne ulegające biodegradacji
  • niższe koszty obróbki ścieków
  • mniejsze wynoszenie
  • znacznie ograniczona emisja oparów do atmosfery

Dobór odpowiedniego przygotowania powierzchni jest w tym przypadku zadaniem dostawcy technologii i wymaga niekiedy przeprowadzenia prób na detalach klienta.

2. Odtłuszczanie elektrochemiczne

Jest ostatnim przed aktywacją procesem w sekwencji przygotowania powierzchni. Działanie chemiczne jest w tym etapie zintensyfikowane przez wydzielanie się tlenu (cykl anodowy), lub wodoru (cykl katodowy). Składy podstawowe kąpieli są zbliżone do odtłuszczania chemicznego. Stosowane czasy, temperatury i gęstości prądu zależą od materiału podłoża, rodzaju zanieczyszczeń i stopnia zanieczyszczenia powierzchni.

W większości przypadków preferuje się odtłuszczanie anodowe (lub katodowo-anodowe, kończące się zawsze dłuższym cyklem anodowym), unikając w ten sposób nawodorowania podłoża oraz ewentualnego osadzania się (w procesie katodowym) na powierzchni detalu zanieczyszczeń obecnych w kąpieli. Również w tym przypadku coraz powszechniej stosowane są gotowe, wyspecjalizowane “mieszanki firmowe”.

Oszczędność wody w galwanizerni

Woda w galwanizerni należy obok chemikaliów, energii elektrycznej i cieplnej do surowców zużywanych podczas procesów galwanicznych. Ponieważ w ostatnim czasie bardzo wzrosły koszty utrzymania galwanizerni z powodu rosnących cen metali na światowych giełdach, warto zastanowić się, jakie można zastosować zmiany w technologii, aby zmniejszyć koszty własne. Jednym ze sposobów jest ograniczenie zużycia wody. Jest ona stosowana zarówno do sporządzania kąpieli, uzupełniania strat oraz do procesów płukania, które pochłaniają największe jej ilości. Zmniejszenie zużycia wody do płukania powoduje jednoczesną oszczędność kosztów ponoszonych na oczyszczanie ścieków (chemia + energia elektryczna), gdyż będzie ich mniej. Dalszą, pozytywną konsekwencją takiego działania jest zmniejszenie się ilości wytwarzanych szlamów i osadów pogalwanicznych. Jak widzimy, obniżenie zużycia wody pociąga za sobą redukcję innych dodatkowych kosztów.

Racjonalna gospodarka wodą na galwanizerni daje oszczędności daleko wykraczające poza samą cenę wody.

Oto przykłady ważniejszych działań pozwalających uzyskać obniżenie zużycia wody:

  • Zainstalowanie zaworów kulowych i rotametrów na zasilaniu płuczek, w celu precyzyjnego ustawienia przepływu wody na ustalonym poziomie.
  • Zainstalowanie urządzeń odcinających dopływ wody do płuczek, kiedy proces płukania nie jest prowadzony (regulatory czasowe lub fotokomórka).
  • Kilkakrotne używanie tej samej wody do płukania po kilku operacjach np. woda z płukania po trawieniu może być jeszcze raz użyta do płukania po odtłuszczaniu.
  • Ustalenie odpowiednio długiego czasu obcieku z detali (zmniejszenie wnoszenia zanieczyszczeń).
  • Stosowanie odzysków po kąpielach galwanicznych
  • Stosowanie płuczek chemicznych za płuczkami odzyskowymi
  • Wielostopniowe płukanie kaskadowe w przeciwprądzie polegające na ustawieniu szeregu wanien w taki sposób, aby woda płucząca przepływała z wanny do wanny w kierunku przeciwnym niż kierunek przemieszczania detali. Dzięki temu ostatnie płukanie odbywa się w najczystszej wodzie. Dzięki temu można zredukować o ok.70% zużycie świeżej wody.
  • Stosowanie zamkniętych obiegów wód płuczących z jednoczesnym oczyszczaniem na jonitach (najwyższa oszczędność).

Przedstawione propozycje wymagają mniejszego lub większego zainwestowania środków finansowych, które na pewno zwrócą się po określonym czasie użytkowania. Należy jednak pamiętać, że najpierw trzeba rozpocząć od edukacji pracowników galwanizerni, aby zastosowane środki były wykorzystywane w należyty sposób. Wysoka świadomość pracowników będzie niezmiernie pomocna w osiągnięciu wielu celów, w tym omawianego.