Ultradźwiękowe odtłuszczanie

Metoda ultradźwiękowego mycia opiera się na zasadzie wprowadzenia do roztworów drgań ultradźwiękowych, w praktyce przemysłowej o częstotliwości od 20 kHz do 50 kHz. Pozwala to nie tylko na znaczne przyspieszenie procesu, ale także uzyskanie wysokiego stopnia oczyszczenia powierzchni mytych elementów, wyeliminowanie pracy ręcznej oraz łatwopalnych i trujących roztworów.

Technologia mycia ultradźwiękowego znajduje powszechne zastosowanie w przygotowaniu powierzchni w procesach międzyoperacyjnych, końcowych cyklu produkcyjnego, a także w serwisie i konserwacji sprzętu i narzędzi.

Proces czyszczenia ultradźwiękowego uwarunkowany jest szeregiem czynników, do których należą:

  • natężenie i częstotliwość pola ultradźwiękowego w roztworze myjącym
  • rodzaj roztworu myjącego
  • rodzaj zabrudzeń i wymagany stopień oczyszczenia
  • rodzaj materiału czyszczonych elementów

Intensywność tego procesu zależy od wielu parametrów, a głównie w kolejności j.n.:

  • mechaniczno-erozyjne oddziaływanie zjawiska kawitacji na oczyszczane powierzchnie
  • fizyczno-chemiczne oddziaływanie roztworu na zabrudzania
  • stopień rozpuszczalności i dyspersji zabrudzeń v; roztworze
  • stopień dyfuzji i zwilżenia powierzchni określający możliwości wnikania roztworu w pory, zagłębienia i małe otwory

Istotą mycia ultradźwiękowego jest powstanie kawitacji w roztworze, dzięki której pokonywane są mechaniczne siły przytrzymujące zabrudzenia przy powierzchni oraz przyspieszony jest proces ich rozpuszczenia.

Efektywność kawitacji w znacznym stopniu zależy od własności fizycznych użytego roztworu myjącego. I tak:

  • wysokie napięcie powierzchniowe cieczy podnosi natężenie kawitacji, jednak wymagane jest wówczas osiągnięcie wyższe progu kawitacji.
  • niskie napięcie powierzchniowe cieczy zwiększa zwilżalność mytych powierzchni. Roztwory o takich właściwościach nadają się do mycia elementów o skomplikowanych kształtach.
  • mała gęstość cieczy obniża natężenie kawitacji.
  • duża gęstość cieczy zwiększa oporność akustyczną.
  • zagazowanie cieczy obniża natężenie kawitacji.
  • niskie ciśnienie par nasyconych cieczy zwiększa natężenie kawitacji.
  • temperatura cieczy wpływa istotnie na wartość natężenia kawitacji.

Dla roztworów wodnych optymalny poziom wynosi około 55°C, dla rozpuszczalników alkoholowych wynosi 10 – 20°C, a rozpuszczalników na bazie nafty wynosi 20 – 30°C.

Roztwory stosowane do mycia ultradźwiękowego można pogrupować j.n.:

  • Rozpuszczalniki organiczne.
  • Roztwory wodne

Rozpuszczalniki organiczne charakteryzują się dobrymi właściwościami rozpuszczania różnych zanieczyszczeń. Jednak przed zastosowaniem należy zwrócić uwagę na poziom tłumienia ultradźwięków, toksyczność, możliwość regeneracji oraz narażenie korozyjne mytych elementów, urządzenia do mycia ultradźwiękowego na rozpuszczalniki organiczne są znacznie droższe od urządzeń na roztwory wodne. Stosowanie roztworów wodnych pozwala na uzyskanie najwyższego natężenia kawitacji w porównaniu z innymi kąpielami myjącymi. Przy odpowiednim doborze rodzaju roztworu pod kątem występujących zanieczyszczeń i materiału elementów, jego stężenia, otrzymuje się wysoką, pożądaną efektywność oczyszczenia powierzchni.

Roztwory wodne można podzielić na:

  1. zasadowe detergenty, mieszaniny czyszczące na bazie wodorotlenku sodu, fosforanu sodu, szkła wodnego i innych
  2. kwaśne wodne roztwory kwasu winowego, cytryno w ego i innych organicznych i nieorganicznych kwasów
  3. neutralne mieszaniny i emulsje / rozpuszczalnik organiczny + emulgator + stabilizator + woda

Własności i efektywność oczyszczenia odczynników zasadowych można określić według liczby pH w roztworze:

1.1. Roztwory zasadowe o pH 10,5 do 11,2 są najmniej agresywne. Używane są do oczyszczenia aluminium i jego stopów, mosiądzów i stopów cynku odlewanych ciśnieniowo. Z uwagi na wartość pH możliwe jest występowanie korozji po obróbce.

1.2. Roztwory zasadowe o pH 11,2 do 12,4 znajdują zastosowania przy myciu aluminium i jego stopów, stopów cynku, stali z zanieczyszczeń z lekkich olei ropopochodnych, past polerskich.

1.3. Roztwory zasadowe o pH 12,4 do 13,8 zawierają związki sodu i szło wodne. Można usunąć przy ich pomocy zanieczyszczenie z mineralnych i roślinnych olei, a nawet stare farby i naloty. Najaktywniejszym roztworem zasadowym o pH 13,3 można oczyścić powierzchnię z rdzy, tlenków i kamienia kotłowego. Do wszystkich rodzajów roztworów zasadowych dodawany jest fosforan sodu, który służy do zmiękczenia wody. Stosowane stężenia roztworów zawierają się w granicach 0,2-2,0%.

2.1. Roztwory kwaśne w myciu ultradźwiękowym używane są do usuwania rdzy, trawienia, odbijania przypieczonych warstw powstałych podczas kucia i ciągnienia. Z uwagi na wpływ energii ultradźwiękowej na podwyższenie agresywności słabego kwaśnego roztworu należy zabezpieczyć odpowiednio wannę przed uszkodzeniem. Rodzaj stosowanych kwasów i ich stężenie w roztworze zależy od gatunku materiału oczyszczanych elementów. Temperatura pracy roztworów kwaśnych wynosi 20°C, a stężenie od 5 do 25% dla materiałów mało odpornych i 20 do 50% dla materiałów bardziej odpornych.

3.1. Roztwory neutralne charakteryzują się spolaryzowaną budową molekularną. Uzyskuje się dzięki nim obniżenie napięcia powierzchniowego wody, emulgowanie olejów i dyspergowanie zanieczyszczeń stałych. Stosowane są przede wszystkim przy oczyszczaniu narzędzi i sprzętu medycznego, zespołów i podzespołów elektronicznych.

Technologia oczyszczania ultradźwiękowego składa się z operacji j.n.

  • wstępnego mycia bez udziału ultradźwięków, stosowane w przypadku silnego zabrudzenia
  • mycia ultradźwiękowego
  • płukania w czystej wodzie lub w wodzie demineralizowanej
  • suszenia

Urządzenia do mycia ultradźwiękowego wytwarzane są w różnych wielkościach w zależności od wymiarów elementów i potrzeb produkcyjnych. Pojemność wanien ultradźwiękowych wynosi od 0,5 dm3 do rzędu kilku metrów sześciennych. Przetworniki ultradźwiękowe umieszcza się na dnie wanny lub na jej ściankach. Obecnie stosuje się wysokosprawne przetworniki piezoelektryczne i generatory tranzystorowe o mocy jednostkowej od 100 do 1200 W.

Odtłuszczanie w rozpuszczalnikach organicznych

Odtłuszczanie w rozpuszczalnikach organicznych polega na usuwaniu z mytych powierzchni zanieczyszczeń tłuszczowych i tłuszczo-podobnych (oleje, smary, itp.) na drodze fizycznego rozpuszczania.

Rozpuszczalniki organiczne stosowane są do mycia “ciężkiego”, z bardzo dużych i trudnych do usunięcia zabrudzeń, w procesach, które mają charakter mycia wstępnego oraz do mycia “precyzyjnego”, przy bardzo wysokich wymaganiach co do czystości mytych powierzchni.

Zalety odtłuszczania w rozpuszczalnikach organicznych są następujące:

  • rozpuszczają trudne do usunięcia w kąpielach wodnych zanieczyszczenia takie jak smary, oleje mineralne, woski, itp.,
  • stwarzają możliwość prowadzenia procesu odtłuszczania bez wytwarzania ścieków,
  • jako środki myjące wykazują dużą żywotność, nie wymagają tak częstej wymiany jak kąpiele wodne.

Dobry rozpuszczalnik powinien wykazywać następujące właściwości:

  • duża zdolność rozpuszczania różnego rodzaju tłuszczów,
  • możliwość bezpiecznego operowania, tj. niepalność, brak zdolności tworzenia z powietrzem mieszanek wybuchowych,
  • małe ciepło parowania, wysokie ciśnienie par, niska temperatura wrzenia (szybkie odparowanie rozpuszczalnika z mytych powierzchni),
  • mała rozpuszczalność w wodzie,
  • łatwość regeneracji,
  • mała toksyczność,
  • mała szkodliwość oddziaływania na środowisko,
  • niskie opłaty za gospodarcze korzystanie ze środowiska,
  • niska cena i łatwość nabycia.

Dobór rozpuszczalnika i techniki odtłuszczania zależy od skali produkcji, rodzaju usuwanych zanieczyszczeń, stawianych wymagań co do stopnia czystości mytych powierzchni metalu i od parametrów fizykochemicznych rozpuszczalnika (temperatura wrzenia, temperatura zapłonu, dolna i górna granica wybuchowości, lotność).

Istnieje wiele technik odtłuszczania w rozpuszczalnikach organicznych:

  • odtłuszczanie w parach rozpuszczalnika,
  • odtłuszczanie z zastosowaniem połączonego działania cieczy i pary z systemem ciecz-para, para-natrysk-para, ciecz-para-natrysk-para, itp.,
  • odtłuszczanie zanurzeniowe na zimno,
  • odtłuszczanie ręczne za pomocą tamponów, pędzli, szczotek, itp.

Rozpuszczalniki organiczne stosowane do odtłuszczania w galwanizerniach pochodzą głównie z trzech grup związków chemicznych:

  • węglowodory chlorowane,
  • węglowodory aromatyczne,
  • węglowodory alifatyczne.

Najlepsze właściwości technologiczne wykazują węglowodory chlorowane, a wśród nich trójchloroetylen (tri) i czterochloroetylen (per). W warunkach prowadzenia procesu są niepalne i niewybuchowe, skuteczne usuwają różnego rodzaju zanieczyszczenia tłuszczowe i olejowe, szybko odparowują z powierzchni po umyciu. Ich stosunkowo niska temperatura wrzenia umożliwia prowadzenie procesu odtłuszczania w parach rozpuszczalnika lub w układzie ciecz-para oraz regenerację brudnego rozpuszczalnika na drodze destylacji. Trójchloroetylen i czterochloroetylen są szkodliwe dla zdrowia. Znajdują się na liście czynników “prawdopodobnie rakotwórczych” (Rozporządzenie Ministra Zdrowia i Opieki Społecznej z dn. 11.09.1996 r., Dz. U. Nr 121. poz. 571.). Trójchloroetylen dodatkowo wykazuje działanie narkotyczne przy długotrwałym stosowaniu. Trójchloroetylen i czterochloroetylen są dopuszczone do stosowania w warunkach przemysłowych. Praca z tymi rozpuszczalnikami powinna być prowadzona w pomieszczeniach z dobrą wentylacją ogólną, przy sprawnie działającym wyciągu miejscowym. Najkorzystniej jest proces odtłuszczania prowadzić w parach rozpuszczalnika lub w systemie ciecz-para w hermetycznych urządzeniach zapobiegających emisji par rozpuszczalnika. Trójchloroetylen i czterochloroetylen posiadają stosunkowo największe ograniczenia dotyczące najwyższych dopuszczalnych stężeń i stężeń chwilowych w środowisku pracy. Natomiast łagodniejsze są wymagania dotyczące dopuszczalnych stężeń w powietrzu atmosferycznym i stosunkowo niskie opłaty za gospodarcze korzystanie ze środowiska i wprowadzanie w nim zmian.

Całkowity zakaz stosowania wprowadzono dla rozpuszczalników organicznych niszczących warstwę ozonu. Z grupy węglowodorów chlorowanych można tu wymienić 1,1,1- trójchloroetan i czterochlorek węgla.
Węglowodory aromatyczne (toluen, ksylen, solwent naftu, itp.) wykazują bardzo dobre właściwości odtłuszczające i szybko odparowują z powierzchni po myciu. Są palne i wybuchowe co bardzo ogranicza ich stosowanie w galwanizerniach. Są stosowane raczej do odtłuszczania wstępnego. Zabieg odtłuszczania należy prowadzić w wydzielonych pomieszczeniach, bez urządzeń pod napięciem.

Rozpuszczalniki z tej grupy są stosowane na ogół zanurzeniowo, “na zimno”.

Węglowodory alifatyczne należą do rozpuszczalników najbardziej przyjaznych dla człowieka i środowiska. Posiadają stosunkowo najmniejsze ograniczenia dotyczące dopuszczalnych stężeń w środowisku pracy, najwyższe dopuszczalne stężenie w powietrzu atmosferycznym i najniższe opłaty za gospodarcze korzystanie ze środowiska i wprowadzanie w nim zmian.

Aktualnie na rynku pojawiło się wiele preparatów przeznaczonych do mycia i odtłuszczania powierzchni metali, opartych na odaromatyzowanych węglowodorach alifatycznych.

Filtracja w galwanizerni

Filtracja stanowi szeroki zakres zagadnień związanych z rozdziałem faz ciało stałe-płyn (ciecz lub gaz). W przypadku galwanotechniki najbardziej istotne są dwie dziedziny: filtracja procesowa, związana z technologią pokryć oraz filtracja związana z obróbką ścieków. W niniejszym opracowaniu mowa będzie głównie o filtracji procesowej z uwzględnieniem procesu adsorpcji na węglu aktywnym.

Podstawy teoretyczne
—————-

Z pozoru prosty mechanizm odfiltrowywania zanieczyszczeń z cieczy często nastręcza wiele problemów, zarówno z punktu widzenia ekonomiki procesu jak i aspektów praktycznych. Dlatego poznanie mechanizmów rządzących tym procesem ułatwi zrozumienie, lepsze planowanie i optymalizację zarówno istniejących jak i przyszłych instalacji filtracyjnych. Postaramy się przy tym w sposób przystępny naświetlić i rozwiać pewne błędne pojęcia, dość powszechnie występujące. Głównym problemem w uświadomieniu sobie istoty filtracji jest to, iż wielkość zanieczyszczeń jest najczęściej tak mała, iż nie są one widoczne gołym okiem, a oddziaływania fizyczne są nieco inne niż te, do których jesteśmy przyzwyczajeni w świecie „Makro” i muszą uwzględniać zjawiska takie jak siły Van der Waalsa, ruchy Browna czy też potencjał Z. Nie chcąc wchodzić w szczegóły, możemy stwierdzić, że istnieje kilka mechanizmów zatrzymywania cząstek na materiale porowatym, współistniejących lub dominujących w danym układzie. Podstawową istotą zrozumienia zjawiska filtracji, jest uświadomienie sobie, że medium filtracyjne nie jest sitem, które przepuszcza cząstki mniejsze od pewnej wielkości d, zaś zatrzymuje wszystkie od niej większe. Jest to spowodowane zarówno rozkładem wielkości porów w medium, jak i samym mechanizmem filtracji. Jako graficzny przykład tego, że w sicie o dużych oczkach mogą zatrzymywać się stosunkowo małe cząstki może posłużyć „zarośnięta” kurzem kratka wentylacyjna, z którą czytelnik musiał się niejednokrotnie spotkać. W tym przypadku dominującym zjawiskiem pozwalającym na zatrzymanie cząstek są siły bezwładności, oddziaływanie elektrostatyczne oraz ruchy Browna.

Następnym ważnym zagadnieniem jest odpowiedź na pytanie, dlaczego należy usuwać cząsteczki, których nie widać? Filtracja, traktowana (słusznie) jako uciążliwe zło konieczne, jest niezbędna dla utrzymania wysokiej jakości wyrobu finalnego, a także do przedłużenia trwałości kąpieli (proszę sobie wyobrazić koszty ekonomiczne i środowiskowe nakładania powłok, gdyby niemożliwe było oczyszczenie kąpieli). Przede wszystkim zanieczyszczenia osiadłe na powierzchniach mają wymiar pozornie większy, o grubość powłoki. Również zanieczyszczenia, których nie widać są często wyczuwalne jako chropowatości. Istotnym czynnikiem są również zjawiska optyczne. Mimo, że powierzchnia z pozoru wydaje się gładka, nie ma ona pożądanego „błysku”. Odpowiadają za to właśnie niewidoczne gołym okiem nierówności powierzchni.

Dobierając układ filtracyjny najbardziej naturalnym zagadnieniem, który przyszły użytkownik musi określić jest pożądana efektywność filtra, zwykle określana w mikronach (lub mikrometrach 1µm=10-6 m, lub jedna tysięczna milimetra). Najczęściej użytkownik dokonując wyboru kieruje się tym, co jest napisane na opakowaniu filtra lub ulotce reklamowej. Niestety najczęściej niewiele ma to wspólnego z rzeczywistą efektywnością filtra. W czasach, kiedy nie było możliwości technicznych badania filtrów w zakresie drobnych cząstek, a dominującym typem był „sznurek” nawinięty na rdzeń, nazwę filtra (jego efektywność) przyjmowano w sposób dowolny (dzisiaj, takie filtry nazywa się nominalnymi), tzn.nazywano najdokładniejszy filtr, jaki można było według danej technologii wykonać, jako 1µm. Pozostałe efektywności nadawano w sposób bardziej lub mniej dowolny.

Może się to wydać paradoksalne, ale w gruncie rzeczy każde określenie efektywności jest w pewnych warunkach prawidłowe, tzn. można tak dobrać układ testowy oraz tak określić definicję efektywności, że prawdziwą staje się teza o założonej efektywności. Uzmysłowić to sobie możemy na następującym przykładzie. Wyobraźmy sobie hipotetyczną zawiesinę (możliwą do sporządzenia w warunkach laboratoryjnych i w istocie podobną w rozkładzie do zawiesin naturalnych, w których liczba drobnych zanieczyszczeń znacznie przekracza ilość większych) o następującym składzie:

Średnica d Liczba cząsteczek danej frakcji n Czynnik proporcjonalny do masy frakcji nd³
1µm 1000 10³
10µm 100 105
50µm 10 1,25*106
100µm 1 106

Poniżej w tabeli podany jest kumulacyjny rozkład ilościowy i masowy danych frakcji, tzn. pokazujący dla danej średnicy ile procent cząsteczek ma wymiar lub masę większą lub równą danemu wymiarowi.

Średnica d Udział liczbowy ∑n Udział masowy ∑nd³
1µm 100% 100%
10µm 9,99% 99,96%
50µm 0,99% 95,70%
100µm 0,09% 42,53%

Powyższa tabela uświadamia nam jak bardzo rozkład masowy różni się od liczbowego. Proszę zwrócić uwagę, że jedna cząsteczka 100m liczbowo stanowi tylko ułamek procenta ogólnej zawiesiny (0.09%), masowo zaś stanowi ona niemal połowę wszystkich cząstek (42.53%). Załóżmy teraz, że rzetelny producent filtrów sporządził powyższą mieszaninę, przepuścił ją przez filtr i zmierzył efekt (policzył zatrzymane cząstki):

Średnica d Liczba cząstek zatrzymanych na filtrze Liczba cząstek w filtracie
1µm 10 9990
10µm 20 80
50µm 7 3
100µm 1 0

Następnie zdefiniował efektywność filtra jako stosunek ilości (liczby lub masy) cząsteczek o danym wymiarze i większym zatrzymanych na filtrze, do ogólnej ilości (liczby lub masy) cząsteczek (o danym wymiarze i większym) przed filtrem (w pierwotnej zawiesinie). Proszę zwrócić uwagę na dwuznaczność sformułowania ilość w powyższej definicji, które może zarówno oznaczać liczbę cząstek jak i ich masę (objętość). Prześledźmy wyniki w poniższej tabeli:

Średnica d Efektywność liczbowa L Efektywność masowa M
1µm 3,42% 80,60%
10µm 25,23% 80,64%
50µm 72,73% 83,33%
100µm 100% 100%

Wynik jest nieoczekiwany. Według wydawałoby się poprawnej definicji efektywności, otrzymujemy zupełnie różne wyniki zmieniając jedynie znaczenie nie do końca zdefiniowanej wielkości ilość. Ponieważ efektywność większości filtrów nominalnych jest mierzona w powyższy sposób, tzn. masowy, widać jak daleko metoda taka może okazać się myląca (w porównaniu do intuicyjnych oczekiwań). Mierząc stężenia masowe po obu stronach filtra nie jesteśmy w stanie praktycznie nic powiedzieć o efektywności liczbowej (w wielu wypadkach najbardziej interesującej nas) zatrzymywania cząstek o danym wymiarze. W praktyce bardzo często filtry nazywane pięcio-mikronowymi, nie zatrzymują cząstek o takim wymiarze z efektywnością, jaką byśmy od nich oczekiwali po nazwie. W przypadku, gdy użytkownik jest zainteresowany filtrem, który usuwa zanieczyszczenia z efektywnością masową (np. w celu spełnienia norm) podawanie efektywności grawimetrycznej ma głęboki sens. W większości jednak przypadków filtracji procesowej w galwanotechnice ważna jest efektywność ilościowa (w sensie liczby cząstek odfiltrowanych), gdyż liczba cząstek w kąpieli decyduje o jakości, a nie ich stężenie masowe. Dlatego w celu lepszej definicji efektywności wprowadzono parametr βx, który jest zdefiniowany jako stosunek ilości cząstek o wymiarze x i większym, zatrzymanych na filtrze do ilości takich cząstek, które przez filtr przeszły. Dlatego (również z pewnym uproszczeniem) filtr określony parametrem β10=100 powinien na każde sto cząsteczek o wymiarze 10µm, którymi jest obciążony, przepuścić tylko jedną taką cząstkę. Analiza współczynników β dla różnych wymiarów cząstek powie nam więcej o jego charakterystyce. Filtry mogą mieć bądź płaską bądź stromą charakterystykę (tzw. ostre odcięcie). Związek tego parametru z efektywnością procentową jest następujący: L=(β-1)/β*100%.

Przy filtracji kąpieli galwanicznej bardzo istotny jest również cyrkulacyjny charakter filtracji. Wyobraźmy sobie, że dany filtr charakteryzuje się parametrem Przy filtracji kąpieli galwanicznej bardzo istotny jest również cyrkulacyjny charakter filtracji. Wyobraźmy sobie, że dany filtr charakteryzuje się parametrem β10=1 (co odpowiada stosunkowo niskiej efektywności L=50% w stosunku do cząstek 10µm). Jeżeli jednak w danej jednostce czasowej kąpiel przechodzi przez filtr 5-krotnie, to pozorna efektywność wynosi β10’=31 (L’=96,875%). Jest to bardzo duża zaleta układów cyrkulacyjnych. Uświadomienie tej zależności pokazuje również przewagę układów filtracji cyrkulacyjnej, w stosunku do okresowego przepompowywania kąpieli przez filtr. W praktyce w układzie istnieje równowaga dynamiczna: β10=1 (co odpowiada stosunkowo niskiej efektywności L=50% w stosunku do cząstek 10µm). Jeżeli jednak w danej jednostce czasowej kąpiel przechodzi przez filtr 5-krotnie, to pozorna efektywność wynosi β10’=31 (L’=96,875%). Jest to bardzo duża zaleta układów cyrkulacyjnych. Uświadomienie tej zależności pokazuje również przewagę układów filtracji cyrkulacyjnej, w stosunku do okresowego przepompowywania kąpieli przez filtr. W praktyce w układzie istnieje równowaga dynamiczna:

Z-W=F+P

Z – Ilość zanieczyszczeń generowana w układzie lub wprowadzana do niego

W – Ilość zanieczyszczeń wyniesiona z detalem (proporcjonalna do ilości wad, lub skaz)

F – Ilość zanieczyszczeń zatrzymana na filtrze

P – Przyrost stężenia zanieczyszczeń w kąpieli

Rozważmy dwa podstawowe przypadki powyższej zależności. Załóżmy stałą wartość parametru Z, tzn. ilość zanieczyszczeń wprowadzanych i generowanych w układzie jest stała.

  1. F=0, czyli filtracja nie występuje. Wtedy P>0 i W stale rośnie, przekraczając w pewnym momencie akceptowalny poziom (im większe W tym gorsza jakość wyrobu). Innymi słowy stężenie zanieczyszczeń w kąpieli rośnie i coraz więcej ich jest wynoszonych z kąpielą „na wyrobach”.
  2. P=0. Czyli występuje filtracja i układ pracuje w stanie ustalonym (nie ma przyrostu ilości zanieczyszczeń w kąpieli). Z=W+F Poziom jakości detalu odwrotnie proporcjonalny do wielkości W będzie zależał od jakości filtra tym lepszej im wyższa jest wartość F (filtr więcej zatrzymuje). Czyli im wyższe F tym niższe W czyli ilość wad.

Efekt powierzchni filtracyjnej.
—————-

Wielkość filtra powinna być odpowiednio dobrana. Szereg czynników powinien być wziętych pod uwagę, takich jak:

  1. Objętość kąpieli
  2. Efektywność filtra lub wymagana czystość kąpieli
  3. Obciążenie (ilość zanieczyszczeń wprowadzanych lub generowanych)
  4. Charakterystyka układu pompowego
  5. Względy logistyczne (zaopatrzenie w zapasowe wkłady)

Dobierając układ filtracyjny należy pamiętać o podstawowej zasadzie iż łatwo jest popełnić błąd i zainstalować zbyt mały filtr (bardzo kłopotliwy i kosztowny w eksploatacji) kierując się ograniczeniem środków inwestycyjnych na nowe urządzenie. Instalując zaś urządzenie z zapasem (tzw. przewymiarowany) unikamy często kłopotów eksploatacyjnych. Bardzo ważną zależnością empiryczną (mającą podstawy teoretyczne, które musimy pominąć ze względu na ograniczenie miejsca) jest:

T~Ab;

gdzie:

T jest czasem między wymianami wkładów.

A jest powierzchnią filtracyjną (ilością modułów filtracyjnych lub wielkością wkładu).

b jest parametrem zależnym od własności filtracyjnych zarówno wkładu , kąpieli, jak i zanieczyszczeń, który w praktyce przybiera wartości między 1,5 – 2,0.

Dlatego dwukrotne zwiększenie powierzchni filtracyjnej (instalacja urządzenia dwa razy większego) prowadzi do ponad dwukrotnego (w skrajnym przypadku nawet czterokrotnego) zmniejszenia częstotliwości wymian wkładów filtracyjnych. W ten sposób koszty eksploatacji znacznie maleją.

Istotnym czynnikiem w planowaniu układu filtracyjnego, jest także unifikacja. Przy mniejszych instalacjach nie ma sensu dobierać typ filtra specyficzny do każdej kąpieli. Dużo łatwiej będzie wtedy kontrolować stany magazynowe jak i unikać pomyłek przy wymianach wkładów.

Specyfiką galwanotechniki, jest to, że układ filtracyjny występuje najczęściej w postaci autonomicznego agregatu filtracyjnego, dostarczanego przez jednego dostawcę. Rzadziej galwanizernia decyduje się na własną kompletację (pompy, filtra i orurowania). Ze względu na aspekty zarówno ekonomiczne (koszt kąpieli) jak i środowiskowe (w przypadku awarii i wycieku) należy zwrócić szczególną uwagę na bezpieczeństwo rozwiązań. W ostatnim czasie szczególnie popularne stały się agregaty oparte o układ pompowy ze sprzęgłem magnetycznym. Bezpieczeństwo, trwałość, cena i uniwersalność takich rozwiązań decyduje o ich wyższości w stosunku do tradycyjnych pomp z uszczelnieniem mechanicznym. Należy również pamiętać, iż w większości przypadków agregat filtracyjny powinien posiadać możliwość zastosowania układu adsorpcji na węglu aktywnym (w postaci wkładu lub złoża). Wygodne jest gdy filtracja mechaniczna powiązana jest z procesem adsorpcji.

Wśród wielu typów wkładów filtracyjnych bardzo popularne w galwanotechnice są wkłady typu świecowego, wgłębnego (zwane niekiedy rurowymi). Obecnie nowoczesnym rozwiązaniem są wkłady wykonane z mikrowłókien polipropylenowych (metoda „melt blown”) o zgradowanej strukturze porów i absolutnym stopniu zatrzymywania.

Bezpieczne grzałki zanurzeniowe

Jakość powłoki galwanicznej w dużym stopniu zależy od temperatury kąpieli. Dlatego grzałki i systemy regulacji temperatury należą do podstawowych elementów wyposażenia galwanizerni. W dużych galwanizerniach używa się często grzałek parowych, natomiast wielu zwolenników, ze względu na swoje zalety mają grzałki elektryczne. Wybór grzałek jest zagadnieniem dość złożonym, obok trwałości i odporności chemicznej należy pamiętać o ochronie przed porażeniem, zminimalizowaniu awarii i zabezpieczeniu przed pożarem. Dobre, prawidłowo dobrane grzałki powinny w sposób bezawaryjny pracować nawet kilka lat.

1. Trwałość i cena
—————-

Ceny grzałek zależą w dużym stopniu od materiału, z jakiego wykonane są ich płaszcze ochronne. Korozyjność kąpieli galwanicznych jest bardzo zróżnicowana, dlatego przed zakupem należy dokładnie przeanalizować warunki pracy i wymagania odporności dla płaszcza.

Grzałki kwarcowe są odporne chemicznie na wszystkie kąpiele poza kwasem fluorowodorowym i fluorkowymi kąpielami do chromowania. Wobec porównywalnej ceny wypierają stopniowo grzałki szklane i porcelanowe. Płaszcz kwarcowy może ulec zniszczeniu jedynie w sposób mechaniczny nie termiczny. Gorącą grzałkę kwarcową można zanurzyć do chłodnej cieczy bez obawy pęknięcia gdyż szkło kwarcowe jest odporne na tzw. „szok termiczny” (gwałtowne zmiany temperatury do 1000°C) oraz długotrwałe przebywanie w temperaturze do 1100°C i krótkotrwałe do 1300°C. Posiada pierwszą, najwyższą kategorię kwaso- i ługoodporności, czym przewyższa wszystkie materiały mineralne.

Grzałki teflonowe są odporne na wszystkie rodzaje kąpieli, jako jedyne wytrzymują we fluorkowej w kąpieli do chromowania lub w kąpieli z kwasem fluorowodorowym. Ich wadą jest dość wysoka cena.

Grzałki ze stali szlachetnej (1.4539) nadają się szczególnie dobrze do kwasów: siarkowego, do 40°C, w pełnym zakresie stężeń (0‑98%), fosforowego (0-85%), solnego (1-2%), a także do alkalicznych kąpieli odtłuszczających z ługiem sodowym.

Grzałki tytanowe ze względu na wysoką cenę tytanu stosuje się praktycznie tylko do kąpieli szlachetnych. Są odporne na prądy błądzące, które powodują mikro rozpuszczanie stali szlachetnych i zanieczyszczanie kąpieli składnikami stopowymi np. chromem. Nie nadają się do kąpieli silnie kwaśnych.

2. Budowa
—————-

Bezpieczne grzałki zanurzeniowe to znaczy, że ich budowa zapewnia odpowiednią ochronę przed porażeniem (por. wkład grzewczy i grzałki izolatorowe!), mają odpowiednią klasę bezpieczeństwa.

Proste pionowe grzałki zanurzeniowe

Moc do 6300 W. Napięcie 220 lub 380 V, prąd zmienny 1-, 2- lub 3-fazowy. Długość płaszcza: 315-2500 mm (Ø44-54 mm). Minimalne zanurzenie: 220-1740 mm. Bryzgoszczelne.

Odmiana – grzałki do małych kąpieli

Moc: 200-1500 W. Napięcie 220 V prądu zmiennego. Długość płaszcza: 100-600 mm (Ø21-32) Minimalne zanurzenie: 90-470 mm.

Istotną zaletą grzałek może być budowa modułowa. Grzałka o takiej budowie składa się z następujących części:

  • głowica z polipropylenu (PP) (do 100°C) lub polifluorku winylidenu (PVDF) (do 135°C) z pierścieniem mocującym, zabezpieczenie bryzgoszczelne;
  • kabel zasilający zabezpieczony przed przegięciem i wyrwaniem z wtopioną wtyczką z uziemieniem;
  • wkład grzewczy z zaciskami do mocowania przewodów kabla (do płaszczy niemetalowych z nierozłączalnym mechanicznie ani elektrycznie zabezpieczeniem przed porażeniem);
  • płaszcz ochronny (obudowa), materiał: kwarc, szkło, porcelana, stale szlachetne, tytan, teflon.

Wkład grzewczy osłonięty jest płaszczem ochronnym dokręconym do głowicy pierścieniem mocującym (zabezpieczenie bryzgoszczelne). Łatwy montaż i demontaż pozwala na zmniejszenie kosztów eksploatacji np. wystarczy kupić i wymienić wkład grzewczy lub stłuczony płaszcz kwarcowy czy szklany bez potrzeby kupowania znacznie droższej, kompletnej grzałki. Uwaga: Najmniejsze grzałki są zwykle nierozbieralne.

Znane są dwa typy głowic, bez uchwytu, do mocowania grzałek w pokrywie, w pierścieniach ze specjalnej gumy i zespolone z uchwytem do mocowania na krawędzi wanny. W razie potrzeby do głowicy bez uchwytu można przykręcić demontowalny uchwyt do mocowania.

Z dwóch typów wkładów grzewczych, wkłady z rdzeniem ceramicznym zapewniają równomierne ogrzewanie całej powierzchni grzałki, w przypadku zamoczenia (np. stłuczenie płaszcza) wymagają bardzo dokładnego umycia i wysuszenia. Wkłady w metalowej rurze są wygodne do umycia i wysuszenia, ale ogrzewają powierzchnię w sposób mniej równomierny.

Płaszcz ochronny to rura zamknięta od dołu, z kołnierzem od góry. Materiał odpowiedni do przeznaczenia grzałki np.: kwarc, szkło, porcelana, stale szlachetne, tytan, teflon.

W grzałkach izolatorowych do kąpieli elektrolitycznych przewód uziemiający odizolowany jest od metalowego płaszcza grzałki specjalną konstrukcją zabezpieczającą. Oznacza to, że posiadają one całkowicie skuteczną ochronę przed porażeniem. W razie awarii, na płaszczu nie pojawia się napięcie. Grzałki te mimo metalowej obudowy, nie powodują przepływu prądu stałego przez elektrolit (nie ma różnicy potencjałów między ziemią a zerem). Na ich płaszczach nie odkładają się więc osady metaliczne. Jest to zaleta typowa dla grzałek z płaszczami kwarcowymi, szklanymi lub porcelanowymi, a jednocześnie płaszcz jest nietłukący. Seryjnie stosuje się wyłącznie płaszcze ze stali szlachetnej lub z tytanu.

Grzałki o obciążeniu powierzchni ok. 1,5 W/cm² zalecane są do kąpieli, w których na płaszczu grzałki powstają trudno rozpuszczalne osady pogarszając wymianę ciepła. Rozwiązanie to zapobiega konieczności częstego czyszczenia i przedłuża czas eksploatacji grzałek.

Patrony grzewcze, grzejniki rurowe i ożebrowane

Patrony grzewcze stosuje się do ogrzewania pieców suszarniczych, podgrzewaczy olejowych, pieców piekarniczych, kotłów warzelniczych, pieców kąpielowych, płyt prasujących, wędzarni, pieców akumulacyjnych, parników paszowych, kąpieli z olejami hartowniczymi, ołowiowymi, odtłuszczającymi, bitumicznymi itp.

Oprócz prostych patronów grzewczych stosuje się jeszcze:

  • wkręcane grzejniki z termostatem,
  • wkręcane grzejniki rurowe (rury miedziane niklowane lub tytanowe),
  • ożebrowane grzejniki rurowe.

Moc patronów grzewczych została tak konstrukcyjnie rozłożona, że mają one długą żywotność i są bardzo bezpieczne w użyciu. W typoszeregu wkładów grzewczych występuje 5 średnic: Ø32, 36, 39, 45, 57, długość: 220-2000 mm, moc: 400-12000 W.

Do podgrzewania roztworów wodnych do ok. 100°C należy stosować patrony o obciążeniu powierzchni 1,5-2,4 W/cm²; do podgrzewania tłuszczu, oleju, smoły, tri itp. patrony o obciążeniu powierzchni 1,5-2,0 W/cm².

Patrony grzewcze nadają się zarówno do zabudowy pionowej jak i poziomej.

Podstawowe części patronu grzewczego to: ceramiczny wkład grzewczy i płaszcz ochronny (obudowa), ewentualnie z bryzgoszczelnym kołpakiem ochronnym (IP65). Ceramiczne wkłady grzewcze mają bardzo wysoką wartość izolacji i bardzo dobrą odporność na zmiany temperatury. Niektóre rodzaje patronów mają wytrzymałość na przebicie do 4000 V.

Typ płaszcza ochronnego zależy od sposobu mocowania np. z kołnierzem do wspawania, z kołnierzem do przykręcania, z końcówką gwintowaną, z głowicą PP (PVDF). Materiał płaszcza: stal st 35, stal szlachetna 4571, tytan.

3. Regulacja i ograniczanie temperatury, zabezpieczenie przed grzaniem „na sucho”
—————-

Grzałki w pełni zautomatyzowane to proste pionowe grzałki wyposażone w zintegrowany system automatycznej regulacji temperatury. Elektrody czujników przymocowane na stałe do głowicy grzałki mają długość odpowiednią do minimalnej głębokości kąpieli. Obudowa regulatora temperatury połączona jest z grzałką za pomocą elastycznego kabla. Grzałki takie nie tylko zapewniają utrzymanie odpowiedniej, stałej temperatury, ale dodatkowo zabezpieczają przed przegrzaniem i grzaniem „na sucho” tym samym ograniczają niebezpieczeństwo powstania pożaru.

Moc do 4000 W. Napięcie 220 lub 380 V, prąd zmienny 1- lub 2-fazowy.

Stosowane są grzałki automatyczne, z wbudowanym układem pomiaru i regulacji temperatury, ale bez zabezpieczeń lub tylko z jednym, wybranym zabezpieczeniem.

Możliwe jest także późniejsze, dodatkowe wyposażenie prostej grzałki w nakładkę z czujnikami, mocowaną na głowicy oraz w system automatycznej regulacji temperatury ewentualnie z zabezpieczeniami, przed przegrzaniem i przed grzaniem „na sucho”.

Zintegrowany system automatycznej regulacji temperatury – „cztery w jednym”, optymalne rozwiązanie do pomiaru i regulacji temperatury oraz zabezpieczenia przed przegrzaniem i przed grzaniem „na sucho”, składa się z następujących elementów:

  • czujnik temperatury i poziomu,
  • elektroniczny, dwupunktowy regulator temperatury (0‑150°C),
  • ogranicznik temperatury (0‑165°C),
  • konduktometryczne zabezpieczenie przed grzaniem „na sucho” (30-500 kΩ),
  • zasilanie grzałki.

We wszystkich typach urządzeń, pochwy czujnika temperatury i elektrody czujnika poziomu powinny być pokryte teflonem i dopasowane do minimalnego zanurzenia. Dopóki obie elektrody są zanurzone w kąpieli, regulator włącza i wyłącza grzałkę regulując nastawioną temperaturę. Jeżeli poziom cieczy spadnie poniżej elektrody zabezpieczającej przed grzaniem „na sucho” albo temperatura cieczy przekroczy wartość nastawioną (awaria regulatora) odpowiedni bezpiecznik automatycznie wyłączy grzałkę. To samo dotyczy uszkodzenia czujników. Stany urządzenia sygnalizują świecące diody: „zielona” podłączone do sieci, „pomarańczowa” grzanie, „czerwona” przegrzanie lub grzanie „na sucho” (grzałka wyłączona). Elektroniczny regulator w wykonaniu cyfrowym wraz z ogranicznikiem temperatury i zabezpieczeniem przed grzaniem „na sucho” umieszczono w bryzgoszczelnej obudowie z tworzywa sztucznego z przezroczystą pokrywą. Dzięki temu może on być zainstalowany w pobliżu kąpieli (np. na krawędzi wanny) i służyć dodatkowo jako termometr.

Możliwe jest kupno i zainstalowanie każdego z urządzeń osobno, ale wtedy ich łączny koszt jest ok. 2 razy wyższy od systemu zintegrowanego.

Nawet najlepsze urządzenia psują się. Awaria regulatora temperatury w pozycji „grzanie” może doprowadzić do przegrzania i zniszczenia kąpieli, a nawet do uszkodzenia wanny. Jeżeli zainstalowano zabezpieczenie przed przegrzaniem, po przekroczeniu zadanej temperatury, nieco wyższej od regulowanej, grzałka zostaje automatycznie wyłączona. Ponowne uruchomienie grzałki wymaga wciśnięcia przycisku przez osobę uprawnioną.

Zdarza się, że wanna jest nieszczelna lub nie uzupełniono na czas odparowanej wody. Praca grzałki częściowo wynurzonej może doprowadzić do jej uszkodzenia, a nawet do pożaru i tym samym bardzo dużych strat. Jeżeli zainstalowano zabezpieczenie przed grzaniem „na sucho”, po obniżeniu się poziomu kąpieli poniżej dopuszczalnego, grzałka zostaje automatycznie wyłączona. Ponowne uruchomienie grzałki nastąpi automatycznie po uzupełnieniu kąpieli do odpowiedniego poziomu.

Zintegrowany system automatycznej regulacji temperatury wraz z zabezpieczeniem przed przegrzaniem i grzaniem „na sucho” może być stosowany jako komplet z jedną lub dwiema prostymi grzałkami pionowymi, w połączeniu z grzałkami innych typów np. z grzałkami kątowymi lub do małych kąpieli itp., z gniazdami do podłączenia 2-3 grzałek, a także do sterowania większą liczbą grzałek.

W przypadku gdy łączna moc grzałek jest większa niż 3,5 kW system musi być połączony z grzałkami za pośrednictwem stycznika.

Duże firmy dysponują zwykle pełną, wielobranżową obsługą techniczną. Odpowiednie służby bez większych problemów konstruują układy elektryczne, „pomiarówkę” i automatyczne sterowanie. W sytuacjach kiedy wymagana jest jednak prostota montażu i sprawne działanie przy minimalnej obsłudze, idealnym rozwiązaniem są grzałki w pełni zautomatyzowane – „dwa, trzy lub cztery w jednym”.

4. Określanie mocy grzałek – podstawy obliczeń
—————-

Moc na podgrzanie kąpieli zależy od objętości cieczy (V), różnicy temperatur (ΔT), strat ciepła (kształt wanny, izolacja, pokrywa) (fs), czasu podgrzewania (τ) i rodzaju cieczy (fm). Na podgrzanie kąpieli potrzeba więcej energii niż tylko do utrzymywania jej w stałej temperaturze (tab. 1).

Moc na podgrzanie

P [kW] = V [l] x ΔT [K] x fs / τ [h] / fm

Przykład:

200 l wody ogrzać o 42 K (od 18 do 60°C) przy stratach 30% w czasie 5 h

P = 200 l x 42 K x 1,43 / 5 h / 857 = 2,8 kW

Moc na ogrzewanie ciągłe zależy od rodzaju procesu, zwykle jednak głównie od strat ciepła, w tym także wynikających z wprowadzania zimnych detali i uzupełniania wody.

Określając moc grzałek należy pamiętać o dopuszczalnym obciążeniu powierzchni grzewczej. Im mniejsze obciążenie tym trwalsza grzałka i mniej niekorzystnych zjawisk na jej powierzchni (tab. 2).

Obciążenie powierzchni grzałki

O [W/cm²] = P [W] / L [mm] / Ø [mm] x 31,8

Przykład:

grzałka 2000 W, długość ogrzewana 450 mm, Ø rury 51 mm

O = 2000 W / 450 mm / 51 mm x 31,8 = 2,8 W/cm2

5. Akcesoria
—————-

Grzałki wszystkich typów można wyposażyć w dopasowane do minimalnego zanurzenia czujniki temperatury i poziomu, w pochwach ze stali szlachetnej, tytanu lub teflonu, analogowe (E) lub cyfrowe (EDIG) elektroniczne regulatory temperatury, ograniczniki temperatury, zabezpieczenia przed grzaniem „na sucho”.

Wartym polecenia prostym urządzeniem, które poprawia ekonomiczne wykorzystywanie grzałek, jest włącznik zegarowy. Nie pracując przez weekend, nie grzejemy kąpieli „na pusto”, ale ustawiamy początek grzania np. na poniedziałek godz. 4 rano tak aby kąpiel miała odpowiednią temperaturę o godz. 8.00.

Odrębnie zamawiane akcesoria to: uchwyty, gumowe pierścienie, głowice z PVDF zamiast z PP, kabel silikonowy (do 200°C) lub z PCW (do 60°C), klucze do zakręcania głowic, stopy dystansowe od dna lub ściany.

Tabela 1. Współczynniki stosowane do obliczeń mocy grzałek
Straty ciepła
10% 20% 30% 40% 50% 60%
Przedstawione liczby są wynikami przeprowadzonych testów, nie mogą być jednak podstawą jakichkolwiek roszczeń.
Współczynnik strat ciepła – fs 1,11 1,25 1,43 1,67 2 2,5
Współczynnik medium – fm woda (kwas/ług): 857 olej: 2149
Tabela 2. Typowe wartości obciążenia powierzchni grzałek
Rodzaj grzałki – Proces Obciążenie powierzchni [W/cm²]
Proste pionowe duże 2…3,5
Proste pionowe małe 3,5…4,0
Teflonowe 1,5
Fosforanowanie max. 1,5
Nikiel chemiczny max. 1,5
C2Cl4, C2HCl3 max. 1,5
Ogrzewanie oleju max. 1,5….2,0
Ogrzewanie powietrza (w obiegu) 2,5….3,0

System sterowania procesami galwanicznymi

Oprogramowanie do kontroli procesów ProGal firmy Ditec jest narz dziem opracowanym specjalnie do zastosowa w instalacjach do galwanicznego nakładania powłok, pracuj cym z powodzeniem w ponad 500 liniach na całym świecie.

System sterowania procesami ProGal oferuje maksymalną elastyczność produkcji. Po zainstalowaniu oprogramowania ProGal, użytkownik ma możliwość samemu tworzyć oraz zmieniać przebiegi (procesy), bez konieczności posiadania specjalistycznej wiedzy. Na podstawie danych wprowadzonych przez użytkownika system optymalizujący natychmiast samodzielnie generuje cyklogram (diagram droga-czas) najlepiej dopasowany do warunków na linii. Dodatkowo, optymalizacja zarządza wszystkimi równoległymi zadaniami, w przypadku gdy na linii przeprowadzane są rożne procesy w tym samym czasie.

Czasy ekspozycji w zakresie zdefiniowanych tolerancji są przestrzegane.

Do dyspozycji dostępne są dwa sposoby sterowania przepływem produktów na linii:

  • kontrola procesów poprzez elastyczny optymalizujący system
  • kontrola procesów poprzez zastosowanie cyklogramu (diagram droga-czas) rozwiązanie tradycyjne

System ProGal skomponowany jest, w sposób pozwalający na szybkie dostosowanie do szerokiego zakresu wielkości instalacji. System równie dobrze obsługuje, proste linie z tylko jednym transporterem, jak i skomplikowane wielorzędowe instalacje z w pełni zautomatyzowanym procesem przeładowczym.
Struktura ProGal oparta jest na hierarchicznych zasadach.

Przemysłowy komputer, wyposażony w system operacyjny Windows 2000 lub XP, spełnia funkcje sterowania centralnego reprezentując interfejs operatora człowiek – maszyna (poprzez wizualizacje) oraz optymalizując i synchronizując całą instalację do obróbki nakładania powłok.

Komputer centralny komunikuje się poprzez interfejs Ethernet’owy z podrzędnym systemem automatyki przemysłowej (np. Siemens PLC S7-400). Protokół komunikacyjny pomiędzy komputerem centralnym, a sterownikiem PLC jest standaryzowany i dobrze udokumentowany. W zakresie podrzędnego systemu sterowania leży sprzętowa kontrola\regulacja wszystkich peryferii wchodzących w skład linii (np. prostowników, regulatorów temperatury, pompek dozujących, systemu transportowego).

Komputerowy system zarządzający:

ProGal jako komputerowy system zarządzający oparty jest na architekturze Klient/Serwer, składający się z dwóch aplikacji.

Serwer (aplikacja 1) jest uruchomiona na stałe(tylko jako jedna sesja), działająca w tle systemu Windows XP. Zadania wykonywane przez serwer to: optymalizacja ruchów w systemie transportowym, komunikacja (parametry-\wysyłanie poleceń, obserwacja) z podrzędnym systemem sterowania, system informacji alarmowych, protokołowanie (np. do bazy danych SQL).

Oprogramowanie klienckie (aplikacja 2) reprezentuje interfejs pomiędzy operatorem, a maszyną i zawiera wizualizacje całej instalacji.Używając oprogramowania klienckiego użytkownik może zarządzać oraz obserwować wszystkie parametry procesowe oraz nastawy peryferii (np. temperatury, czasy, prostowniki, stacje dozujące,…) za pomocą łatwego systemu okienkowego. Standardowe wyposażenie w moduł administracji dostępu umożliwia nadawanie różnych poziomów dostępu do aplikacji. Powoduje to zwiększenie bezpieczeństwa oraz wykluczenie nieautoryzowanych ingerencji w system.

System ProGal umożliwia wgląd we wszystkie parametry procesowe (nastawy prądowe, dokładna godzina zakończenia procesu, czasy dla poszczególnych kroków…) wsadów znajdujących sie w produkcji oraz ich edycje on-line. Wystarczy kliknąć na wsad aby wyświetlić wszystkie niezbędne informacje.
Aby stworzyć nowy proces wystarczy wykonać 4 proste czynności.

  • Definiowanie pozycji oraz ich kolejności, które mają być użyte w procesie
  • Konfiguracja pozycji alternatywnych
  • Definiowanie programów prądowych
  • Definicja pozostałych parametrów procesowych (czasy ekspozycji, tolerancje, czasy ociekania, itp…)

System sam zadba o ruchy transporterów aby maksymalizować wydajność przy zachowaniu czasów ekspozycji. Wszystkie wprowadzone dane można edytować w dowolnym momencie.
Zaawansowany system informacji o ostrzeżeniach oraz zakłóceniach posiada możliwość komentowania oraz przypisywania bitmap do każdego komunikatu przez użytkownika. Standardowa treść komunikatów pozwala w szybki sposób zlokalizować uszkodzoną aparaturę w szafie lub dokumentacji elektrycznej.

Do dyspozycji użytkownika pozostają liczne narzędzia, pomagające monitorować stany urządzeń transportowych oraz innych peryferii. Dostępne są również listy wszystkich wejść\wyjść cyfrowych oraz analogowych grupowane według funkcji. Wykrycie przyczyn usterki staje się bardzo szybkie i proste.

Moduł protokołowania produkcji umożliwia zapisywanie oraz zestawianie w różne raporty wszystkich parametrów procesowych (data, czas, trwanie, przebieg, numer belki lub wsadu, błędy) z możliwością wydruku (istnieje możliwość filtrowania list).

Dostępne są różne rodzaje protokołów np.:

Zakłócenia

  • Ostrzeżenia
  • Wyprodukowane artykuły
  • Wyprodukowane części
  • Liczniki
  • itp…

W module tym dostępnych jest wiele narzędzi do analizy produkcji i stanu maszyny za pomocą wykresów.

Moduł protokołowania wsadów

Wszystkie dane procesowe przypisywane są dla każdego wsadu\belki (data, czas trwania, przebieg, numer wsadu\belki, wartości prostowników, wartości temperatur, zakłócenia, ostrzeżenia, itp…).

Raport dla każdego wsadu\belki zawiera następujące informacje:

  • czas rozpoczęcia procesu
  • czas ukończenia procesu
  • wartości na prostownikach
  • temperatury w wannach podczas procesu
  • zakłócenia wraz z pozycją belki na linii
  • ostrzeżenia wraz z pozycją belki na linii
  • itp…

Aktywacja

Aktywowanie (dotrawianie, dekapowanie) jest to ostatnia operacja poprzedzająca nakładanie powłoki galwanicznej. W procesie tym usuwane są cienkie warstwy tlenkowe, które mogły wytworzyć się na powierzchni metalu w czasie przygotowania powierzchni. Przeprowadzenie tego zabiegu jest niezbędne dla uzyskania właściwej przyczepności powłoki galwanicznej do podłoża.

W większości przypadków proces aktywowania prowadzi się w 10-15% kwasie siarkowym w czasie 30-60 sekund w temperaturze otoczenia. Przy aktywowaniu stali wysokowęglowych lub żeliwa konieczne jest niekiedy krótkotrwałe trawienie anodowe w stężonym kwasie siarkowym (ok.72%) do pokazania się pierwszych pęcherzyków powietrza. Przedmiot aktywowany powinien być następnie dokładnie opłukany i szybko przeniesiony do właściwej kąpieli galwanicznej.

W przypadku aktywowania przedmiotów przed nakładaniem powłok galwanicznych w kąpielach cyjankowych (miedziowanie, cynkowanie, kadmowanie) proces można przeprowadzić w 5-10% roztworze cyjanku sodowego lub potasowego. Po aktywowaniu przedmioty bez płukania przenosi się do właściwej kąpieli cyjankowej.